来自罗威·亚钦大学、马克斯·普朗克化学能源转换研究所和苏黎世理工学院的研究人员已经公布了合成燃料的开拓性进步,这将彻底改变清洁运输。这项研究最近发表在《自然能源》这一重点研究能源的著名科学杂志上,它将"水费"燃料作为可持续交通的一个有希望的解决办法。
研究的题目是 "在使用氢基化费氏燃料的重型运输中实现碳中和和清洁推进。"
由优化的烷-酒精混合物组成的氢化费舍尔-特罗普希燃料,解决了当前合成燃料面临的几个核心挑战。这些先进燃料旨在利用生物量或二氧化碳作为原料来结束碳循环。该流程采用可扩展和成熟的技术,确保可持续和通用的燃料生产方法。
这种创新的方法结合了两种化学方法--费舍尔-托普希合成法和使用合成气体(一氧化碳和氢)的氢甲酸化法,这两种方法已经在工业中广泛使用。氢甲酸化,又称氧化合成或氧化过程,是一种化学反应,它涉及在烯烃(烯烃)中的碳碳双键(c=c)中加入一个甲酸基(CHO)和一个氢原子以形成醛。这种工艺在化学工业中被广泛用于生产醛,然后再进一步加工成醇、酸或其他化学品。通过从生物质、二氧化碳或废物中获取这种气体,并利用可再生能源,生产过程完全没有化石燃料。
HYFIT燃料生产流程将成熟技术纳入新的设计框架,以便快速部署。由此产生的水适应燃料相当于或超过了以前的燃料的碳效率,特别是在基于生物的路线上。当CO转化率在95%以上时,其产率高达83%,可与使用改进的FT合成催化剂生产C2-C5醇的现行方法相比或更好。
实验结果表明,HyFIT燃料符合全球燃料标准,并与现有的车辆基础设施兼容。这种兼容性延伸到已建立的密封材料,使无缝整合到目前的车队,并为立即和广泛采用铺平道路。
对轻型商用车的测试表明,与传统柴油相比,氢燃料燃烧过程中产生的颗粒和氧化氮要少得多。这标志着在减少车辆废气排放和改善空气质量方面迈出了重要的一步。此外,对轮对轮对生命周期的评估表明,"太阳能燃料"可以实现净零温室气体排放,使其成为电气化的坚实补充,特别是对于重型长途运输而言。
这项工作是作为"超越2186燃料科学中心"的英才组的一部分进行的,由德国研究基金会根据德国的卓越战略提供资金(编号:德国研究基金会,DFG)。390919832;S.V.医学硕士,B.M.H.也就是说,特别行政区以及水雷。)。这项研究是由碳酸盐项目资助的。)由德国联邦教育和研究部和瑞士联邦能源局的"甜方案"提供,作为"方案"(A.B.)的一部分。)。
HyFiT synthetic fuels promise carbon-neutral transportation
Researchers from RWTH Aachen University, the Max Planck Institute for Chemical Energy Conversion, and ETH Zurich have unveiled pioneering advancements in synthetic fuels that could revolutionise clean transportation. The study, recently published in Nature Energy, a prominent scientific journal that focuses on research related to energy, presents HyFiT fuels as a promising solution for sustainable transportation.
The title of the study is “Towards Carbon-Neutral and Clean Propulsion in Heavy-Duty Transportation with Hydroformylated Fischer-Tropsch Fuels.”
Hydroformylated Fischer–Tropsch (HyFiT) fuels, composed of optimised alkane–alcohol blends, address several central challenges faced by current synthetic fuels. These advanced fuels are designed to close the carbon cycle by utilising biomass or carbon dioxide as raw materials. The process employs scalable and mature technologies, ensuring a sustainable and versatile approach to fuel production.
This innovative method combines two chemical processes—Fischer-Tropsch synthesis and hydroformylation—using synthesis gas (carbon monoxide and hydrogen), which are already widely used in industry. Hydroformylation, also known as oxo synthesis or oxo process, is a chemical reaction that involves the addition of a formyl group (CHO) and a hydrogen atom to a carbon-carbon double bond (C=C) in an olefin (alkene) to form an aldehyde. This process is widely used in the chemical industry to produce aldehydes, which can then be further processed into alcohols, acids, or other chemicals. By sourcing this gas from biomass, CO2, or waste and using renewable energy, the production process can be made completely free of fossil fuels.
The HyFiT fuel production process integrates mature technologies in a new design framework, allowing for quick deployment. The resulting HyFiT fuels match or exceed the carbon efficiency of previous FT fuels, especially for bio-based routes. The yields of up to 83% at CO conversions above 95% are comparable to or better than current methods for producing C2–C5 alcohols using modified FT synthesis catalysts.
Experimental results showed that HyFiT fuels comply with global fuel standards and are compatible with existing vehicle infrastructure. This compatibility extends to established sealing materials, enabling seamless integration into the current vehicle fleet and paving the way for immediate and broad adoption.
Tests on a light commercial vehicle revealed that HyFiT fuels produce significantly fewer particles and nitrogen oxides during combustion compared to conventional diesel. This marks a significant step towards reducing vehicular emissions and improving air quality. Furthermore, a well-to-wheel life cycle assessment demonstrated that HyFiT fuels can achieve net-zero greenhouse gas emissions, making them a solid complement to electrification, especially for heavy-duty, long-distance transport.
The work was performed as part of the Cluster of Excellence EXC2186 ‘The Fuel Science Center’, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (no. 390919832; S.V., M.N., B.L., M.H., K.S., S.P. and W.L.). The study was funded from the Carbon2Chem project (03EK3042C; M.B.) by the German Federal Ministry of Education and Research (BMBF) and from the Swiss Federal Office of Energy’s SWEET programme as part of the project PATHFNDR (A.B.).
For more information and to read the complete study, click here.